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ABSTRACT

Methodological integrity is not the sina Qua non of program

evaluation endeavors. But decision-makers do have a right to

expect, at a minimum, that evaluation results will generalize to

reality. Five precepts regarding improved methodological practice

are presented and explained in some detail. These precepts focus

on statistical significance testing, the use of multivariate

statistics to honor the complexity of program reality, the

discarding of variance to conduct OVA or chi- quare analyses, the

use of covariance or statistical control, and the use of stepwise

analytic methods.

3



Program evaluators have frequently been concerned that

decision makers do not use their evaluation results to formulate

policy (King & Thompson, 1983b). These concerns. have a long

history. Wholey, Scanlon, Duffy, Fukumoto, and-Vogt .(1970, F. 46)

concluded that "the recent literature is unanimous in announcing

the general failure of evaluation to affect decision-making in a

significant way." Weiss ('972, p. 319) wrote that "evaluators

complain about many things, but their most common complaint is

that their findings are ignored." Similarly, Rippey (1973)

concluded that

At the moment, there seems to be no evidence that

evaluation, although the law of the land,

contributes anything to educational practice other

than headaches for the researcher, threats for

innovators, and depressing articles for journals

devoted to evaluation. (p. 9)

Prominent evaluation theorists have expressed these

concerns. In 1973 Worthen and Sanders noted that "evaluation is

one of the most widely discussed but little used processes in

today's educational systems." Stake (1976, p. 1) once wrote, "We

do not know whether or not evaluation is going to contribute more

to the problems of' education or more to the solutions." Two years

later Patton (1978) wrote that

In many ways the odds are all against utilization

and it is quite possible to become skeptical about

the futility of trying to have impact in a world

where situation after situation seems impervious

to change. (p. 291)
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Alkin and Daillak (1979, p. 41) noted that "there have been great

hopes for evaluation, not only among evaluators themselves, but

also among other educators, elected officials, and the public.

Yet these hopes have dimmed."

Views expressed by local education agency (LEA)

practitioners can be especially dramatic. For example, Holley

(1980) noted that

In an ideal world we wouldn't have to worry about

utilization. Educators would be eagerly awaiting

our findings and would promptly rush to put them

into practice. I don't need to tell you that isn't

happening. (p. 2)

Kilbourne and DeGracie (1979) note that

All LEAs, with possibly a few exceptions, can

point to their volumes of research and evaluation

verbiage sitting on the shelves of district

administrators being usect for little else than a

door stop, swatting flies, or any other of the

various and sundry purposes for which research is

used in the publis schools. (p. 12)

More rec.:atly, researchers and evaluation practitioners

(Thompson, 1982b) have recognized that there are many types of

use, some of which are subtle and somewhat difficult to discern

in the real world of incremental decision making (Eason, 1988;

King, Thompson & Pechman, 1981). Indeed, such a view does help

explain the seemingly paradoxical finding (Alkin, Kosecoff, Fitz-

Gibbon & Seligman, 1974; King & Thompson, 1983a) that
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administrators consistently report evaluation to be usefu'. And

administrators and evaluators appear to have reasonably similar

views of types of evaluators and of the evaluation process

(Thompson, 1980; Thompson & Miller, 1984).

There have been numerous empirical studies of evaluation,

summarized by King and Thompson (1983b), and by King et al.

(1981) in an even more comprehensive report. A number of studies

of evaluation use have employed simulated evaluation reports

(e.g., Thompson, 1982a). Although such studies can be criticized

on several grounds (Thompson & King, 1981), these reports have

provided some insight into evaluation dynamics (Thompson &

Levitov, 1983).

Both simulation and other studies (e.g., naturalistic

qualitative studies) and experience all suggest that "the

personal factor" (Cronbach et al., 1980, p. 174; Guskin, 1980, p.

21; Holley, 1980, p. 8; Leviton & Hughes, 1979, p. 21), i.e.,

administrator perception that the evaluator is competent and

trustworthy, is critical to making evaluation use occur. In some

senses evaluation is largely a persuasive endeavor (Eason, 1988;

Thompson, 1981). This suggests that the methodology employed in

evaluation reperts has a relatively minor role to play in

influencing use.

Patton et al. (1977, p'. 151) report that "there is little in

our data to suggest that improving methodological quality in and

of itself will have effect on increasing the utilization of

evaluation research." Similarly, Dickey (1980) found that

methodological sophistication had no relationship to the level of

use. Kennedy, Apling and Neumann (1980) conducted interviews and

3
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found that evaluators worried about the methodological quality of

their work, but that report users were more concerned about

"educational quality" (p. 111) than about technical quality.

All this is not to say that methodological quality is

unimportant. Rather, it is argued that methodological issues must

be kept in perspective with respect to the impacts that technical

merit will have. As Alkin (1975, p. 207) notes? "one of the best

conscientious defenses against non-utilization of evaluation

findings is a technically sound, methodologically credible

study." As Leviton and Hughes (1979, p. 25) suggest, "If

(methodological) quality does influence use, it is likely to do

so primarily through increased trust that the findings are an

accurate picture of the program." As Johnson (1978, p. 12) notes,

"The central message in this regard is that it is not enough to

conduct methodologically sound research."

But decision makers do have a right, at a minimum, to be

able to expect technically competent work from evaluators. Such

work does not guarantee use, but may be a necessary requisite to

possible use. The purpose of the present paper is to explore five

areas where evaluators might improve methodological practice.

Some evaluators already adhere to these methodological precepts.

Methodology is in some ways an ideologically driven business

(Cliff, 1987; Thompson, 1988d), but the practice of some

evaluators might be improved with reflection upon the issues

raised herein.

A Preliminary Caveat: The Role of Statistical Method in Inquiry

However, one preliminary caveat is in order--methodological



integrity is not the ultimate sina qua non of research,

evaluation or otherwise. Certainly it is true that, "Although' the

quality of educational research is improving,. evidence still

indicates that much of the research published has important

weaknesses" (Borg, 1983, p. 193). Empirical studies of

methodological practice in published research confirm these

general impressions (Persell, 1976; Wendt, 1965; Ward, Hall &

Schramm, 1975). Some of the problems in the quality of the

research literature can be attributed to the journal review

process, studied in an intriguing fashion by Peters and Ceci

(1982). Nevertheless, as Glass (1979, p. 12) suggests, "Our

research literature in education is not of the highest quality,

but I suspect that it is good enough on most topics."

1. Evaluation reports should reflect the limited contribution
that statistical significance testing can be make to the
interpretation of results.

Few methodological offerings have sparked more controversy

than Sir Ronald Fisher's promulgation of significance testing

methods, methods that apparently were developed prior to Fisher's

work (Carlson, 1976). The past 30 years have involved periodic

efforts "to exorcise the null hypothesis" (Cronbach, 1975, p.

124). Morrison and Henkel (1970) and Carver (1978) provide

historically important and incisive explanations of the limits of

significance testing as an aid to interpretation. More recent

informative treatments are available from Dar (1987), Huberty

(1987), Kupfersmid (1988), and Thompson (1987b, 1988c, in press-

b).

Most researchers have been taught the statistical

5
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significance of results does not inform the researcher regarding

the importance of outcomes. Shaver (1985, p. 58) makes this point

in a concrete fashion in his contrived dialogue about

significance testing:

Chris: [Looking puzzled.] Well, as I said, it [my

result] was statistically significant. You

know, that means it wasn't likely to be just

a chance occurrence... An unlikely

occurrence like that surely must be

important.

Jean: Wait a minute, Chris. Remember the other day

when you went into the office to call home?

Just as you completed dialing the number,

your little boy picked up the phone to call

someone. So you were connected and talking

to one another without the phone ever

ringing... Well, that must have been a

truly important occurrence then?

Yet, in three ways actual behavior tends to belie a failure

to really accept that significance testing does not inform

decisions regarding the importance of results. First, journal

editorial boards tend to perceive articles that report

significant results more favorably than articles not reporting

significant results (Atkinson, Furlong & Wampold, 1982). Second,

readers of research findings tend to perceive more favorably

those articles reporting statistically significant results

(Cohen, 1979). Third, and mow: disturbing of all, authors tend
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not to submit manuscripts in which nonsignificant results must be

reported, and even tend to abandon lines of inquiry on the basis

of such results (Greenwald, 1975). These behaviois have been too

readily transmitted to evaluators.

Too few researchers and evaluators appreciate which study

features contribute to statistical significance. Although

significance is a function of at least seven interrelated

features of a study (Schneider & Darcy, 1984), sample size is the

primary influence on significance. Some example results may

clarify the ways in which sample sizes affect significance tests.

Tables 1 and 2 present significance tests associated with

varying sample sizes and either moderate (9.8%) or larger (33.6%)

fixed effect sizes, respectively. The tables can be viewed as

presenting results for either a multiple regression analysis

involving two predictor variables (in which case the "r sq"

effect size would be called the squared multiple correlation

coefficient, R) or an analysis of variance involving an omnibus

test of differences in three means in a one-way design (in which

case the "r sq" effect size would be called the correlation ratio

or eta squared).

INSERT TABLES 1 AND 2 HERE.

Each table presents results for fixed effect sizes but

increasing sample sizes (4, 13, 23, 33, 43, 53, 63, or 123). For

the fixed effect size of 9.8% involved in Table 1, the fixed

effect size becomes statistically significant when there are

somewhere between 53 and 63 subjects in the analysis. For the

33.6% effect size reported in Table 2, the result becomes

70



statistically significant when there are somewhere between 13 and

23 subjects in the analysis.

For a fixed effect size, adding subjects to the analysis

impacts statistical significance in two ways. First, as

illustrated in Tables 1 and 2, the critical F at a fixed alpha

gets smaller as degrees of freedom error increase. Second, as the

degrees of freedom error increase, the mean square error gets

smaller, and thus the calculated F gets larger.

The eva' 4cor who does not genuinely understand statistical

significance would differentially interpret the effect size of

9.8% when there were 53 versus 63 subjects, and would

differentially interpret the fixed effect size of 33.6% when

there were 13 versus 23 subjects in the analysis. Yet the effect

sizes within each table are fixed. Empirical studies of research

practice indicate that superficial understanding of significance

testing has actually led to serious distortions such as

researchers interpreting significant results involving small

effect sizes while ignoring nonsignificant results involving

large effect sizes (Craig, Eison & Metze, 1976)1

Nor does significance testing typically inform the

evaluator regarding the likelihood that results will be

replicated in future work (Carver, 1978). Evaluators who wish to

estimate the likely replicabi"ty of results should instead

employ cross-validation logic (Campo, 1988), the "jackknife"

logic developed by Tukey and his colleagues (Crask & Perreault,

1977), or the "bootstrap" logic developed by Efron and his

associates (Diaconis & Efron, 1983).



Two as:lects of significance testing interpretation in

evaluation reports warrant attention. First, some evaluators use

language implying that they are interpreting significance tests

as if they were effect sizes. But, as Kerlinger (1986, p. 214)

emphasises, "Tests of statistical significance like t an_ F

unfortunately do not indicate the magnitude or strength of

relations." Yet Kerlinger (1986) himself constantly refers to

results being 6aighly significant" (cf. pp. 187, 248, 334), and

other respected textbook authors do so as well (e.g., Cliff,

1987, p. 394).

A second problem in language, implying the interpretation of

significance tests as effect sizes, involves the use of phrases

such as "the results approached statistical significance." Robert

Brown, former editor of the Journal of College Student Personnel,

made the humorous but telling comment at a recent conference:

"How do these authors know their results weren't trying to avoid

statistical significance?" Yet evaluators too often find

themselves reporting that, "The number of years of experience was

not significant but did approach significance."

The most serious misinterpretations of significance testing

tend to occur when sample size is small and effect sizes are

large but are underinterpreted, or when sample sizes are

commendably large and are statistically significant but effect

sizes are modest and are overinterpreted. Evaluators can conduct

analyses such as those reported to in Tables 1 and 2 to determine

when statistically significant effects become insignificant as

sample size decreases, or when an effect size becomes

statistically significant :is sample size is increased, Such

9
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analyses give the administrator a valuable perspective for

interpreting results. the importance of such analyses has been

recognized in Guidelines for Authors in some journals:

6. Authors are encouraged to assist readers in

interpreting statistical significance of their

results. For example, results may be indexed to

sample size. An author may wish to say, "this

correlation coefficient would have been

statistically significant even if sample size had

been as small as n=33," or "this correlation

coefficient would have been statistically

significant if sample size had been increased to

n=138." (MECD, 1988, *3. 46)

2. Evaluation reports should reflect the fact that multivariate
statistics are often vital in educational research.

Multivariate statistics have been available to researchers

for many years, although even today "there are many articles in

the research literature in which multiple univariate statistics

are calculated rather than a single multivariate analysis; for

instance, one article may report 50 t-tests rather than one

MANOVA" (Moore, 1983, p. 307). McMillan and Schumacher (1984)

isolated one reason why some researchers have hesitated to use

multivariate statistical methods:

The statistical procedures for analyzing many

variables at the same time have been available for

many years, but it has only been since the computer

age that researchers have been able to utilize these



procedures. There is thus lag in training of

researchers that has militated against the use of

these more sophisticated procedures. There are in

evidence more each year in journals, however... (p.

270)

Hinkle, Wiersma and Jurs (1979) concurred, noting that "it is

becoming increasingly important for behavioral scientists to

understand multivariate procedures even if they do not use them

in their own research." And recent empirical studies of research

practice do confirm that multivariate methods are employed with

some regularity in published behavioral research (Elmore &

WoehA...e, 1988; Gaither & Glorfeld, 1985; Goodwin & Goodwin,

1985).

There are two reasons why multivariate methods are so

important in behavioral research, as noted by Thompson (1986b)

and by Fish (1988). First, multivariate methods control the

inflation of Type I "experimentwise" error rates. Most

researchers are familiar with "testwise" alpha. But while

"testwise" alpha refers to the probability of making a Type I

error for a given hypothesis test, "experimentwise" error rate

refers to the probability of having made a Type I error anywhere

within the study. When only one hypothesis is tested for a given

group of people in a study, "experimentwise" error rate will

exactly equal the "testwise" error rate.

But when more than one hypothesis is tested in a given

study, the two error rates will not be equal. Witte (1985, p.

236) explains the two error rates using an intuitively appealing



example involving a coin toss. If the toss of heads is equated

with a Type I error, and if a coin is tossed only once, then, the

probability of a head on the one toss and of at.least one head

within the set of one toss will both equal 50%; But if the coin

is tossed three times, even though the "testwise" probability of

a head on each given toss in 50%, the "experimentwise"

probability that there will be at least one head in the whole set

of three flips will be inflated to more than 50%. Researchers

control "testwise" error rate by picking small values, usually

0.05, for the "testwise" alpha. "Experimentwise" error rate, on

the other hand, can be controlled at the "testwise" level by

employing multivariate statistics.

When researchers test several hypotheses in a given study,

but do not use multivariate statistics, the "experimentwise"

error rate will range somewhere between the "testwise" error rate

and the ceiling calculated in the mznner illustrated in Table 3.

Where the experimentwise error rate will actually lie will depend

upon the degree of correlation among the dependent variables in

the study. Because the exact rate in a practical sense is readily

estimated only when the dependent variables are perfectly

correlated (and "experimentwise" error will equal the "testwise"

error) or are perfectly uncorrelated (and "experimentwise" error

will equal the ceiling calculated in the manner illustrated in

Table 3), it is particularly disturbing that the researcher may

not even be able to determine the exact "experimentwise" error

rate in some studies!

INSERT TABLE 3 ABOUT HERE.
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Paradoxically, although the use of several univariate tests

in a single study can lead to too many hypotheses being

spuriously rejected, as reflected in inflation of

"experimentwise" error rate, it is also possible that the failure

to employ multivariate methods can lead to a failure to identify

statistically significant results which actually exist. Fish

(1988) provides a data set illustrating this equally disturbing

possibility. The basis for this paradox is beyond the scope of

the present treatment, but involves the second major reason why

multivariate statistics are so important.

Multivariate methods are often vital in behavioral research

because multivariate methods best honor the reality to which the

researcher is purportedly trying to generalize. Since

significance testing and error rates may not be the most

important aspect of research practice (Thompson, 1988c), this

second reason for employing multivariate statistics is actually

the more important of the two grounds for using these methods.

Thompson (1986b, p. 9) notes that the reality about which most

researchers wish to generalize is usually one "in which the

researcher cares about multiple outcomes, in which most outcomes

have multiple causes, and in which most causes have multiple

effects." As Hopkins (1980, p. 374) has emphasized:

These multivariate methods allow understanding of

relationships among several variables not possible

with univariate analysis... Factor analysis,

canonical correlation, and discriminant analysis- -

and modifications of each procedure--allow

researchers to study complex data, particularly



situations with many interrelated variables. Such is

the case with questions based in the education of

human beings.

Similarly, McMillan and Schumacher (1984) argue that:

Social scientists have realized for many years that

human behavior can be understood only by examining

many variables at the same time, not by dealing with

one variable in one study, another variable in a

second study, and so forth... These (univariate)

procedures hayed failed to reflect our current

emphasis on the multiplicity of factors in human

behavior... In the reality of complex social

situations the researcher needs to examine many

variables simultaneously. (pp. 269-270)

3. Evaluation reports should reflect the recognition that
discarding variance to conduct chi-square or OVA analyses can
lead to serious distortions in interpretations, and that even
when OVA methods are appropriate the methods should usually be
implemented using regression approaches.

Cohen (1968, p. 441) has characterized the conversion of

intervally scaled variables down to the nominal level of scale as

the "squandering (of) much information." As Kerlinger (1986, p.

558) explains, this squandering can lead to distorted results:

...Partitioning a continuous variable into a

dichotomy or trichotomy throws information away...

To reduce a set of values with a relatively wide

range to a dichotomy is to reduce its variance and

thus its possible correlation with other

variables.
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Thompson (1988a, pp. 3-4) notes that

Variance is the "stuff" of which all quantitative

research studies are made... It is not usually

sensible to invest serious effort in collecting

reliable and valid continuous score data, and to

then casually discard the information that we

previously went to some trouble to collect.

Evaluators too frequently discard variance in order to

conduct either Pearson chi-square contingency table tests or

ANOVA, ANCOVA, MANOVA or MANCOVA (hereafter labelled OVA

methods). Certainly there are many problems with typical

applications of the chi-square contingency table test (Thompson,

1388b), but OVA methods are more frequently applied (Elmore &

Woehlke, 1988; Gaither & Glorfeld, 1985; Goodwin & Goodwin,

1985), and empirical research indicates that the use of OVA

methods with variables that were originally intervally scaled

does introduce distortions (Thompson, 1986a). Thus, Cliff (1987,

p. 130) correctly criticizes the practice of discarding variance

on intervally scaled predictor variables to perform OVA analyses:

Such divisions are not infallible; think of the

persons near the borders. Some who should be highs

are actually classified as lows, and vice versa.

In addition, the "barely highs" are classified the

same as the "very highs," even though they are

different. Therefore, reducing a reliable variable

to a dichotomy makes the variable more unreliable,

not less.



Furthermore, even when intervally scaled variables are naturally

nominally scaled, regression approaches to OVA analyses still

tend to be superior to classical OVA calculations (Thompson,

1985).

Most evaluators employing OVA methods are aware that "A

researcher cannot stop his analysis after getting a significant

F" (Huck, Cormier & Bounds, 1974, p. 68). Gravetter and Wallnau

(1985, p. 423) concur that "Reject Ho indicates that at least one

difference exists among the treatments. With k [means] = 3 or

more, the problem is to find where the differences are."

Many evaluators employ unplanned (also called a posteriori

or post hoc) multiple cnmpa:ison tests (e.g., Sheffe, Tukey, or

Duncan) to isolate which means are significantly different within

OVA ways (also called factors) having more than two levels.

Textbook authors tend to discuss unplanned comparisons in

somewhat preiorative terms. For example, several authors refer to

the application of these comparisons dS "data snooping" (Kirk,

1968, p. 73, 1984, p. 360; Pedhazur, 1982, p. 305). Keppel (1982,

p. 150) makes reference to "milking" in his discussion of these

tests. Similarly, Minium and Clarke (1982, p. 321) note that:

Prior to running the experiment, the investigator

in our example had no well-developed rationale for

focusing on a particular comparison between means.

His was a "fishing expedition"... Such comparisons

are known as post hoc comparisons, because

interest in them is developed "after the fact"--it

is stimulated by the results obtained, not by any

prior rationale.

16
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Planned (also called a priori or focused) comparisons

provide a valuable alternative to unplanned comparisons. Pedliazur

(1982, chapter 9) and Loftus and Loftus (1582, chapter 15)

provide readable explanations of these comparisons. Planned

comparisons typically involve weighting data by sets of

"contrasts" such as those presented by Thompson (1985) or those

presented in Table 4. Other types of contrasts, those which test

for trends in means, are provided by Fisher and Yates (1957, pp.

90-100) and by Hicks (1973).

INSERT TABLE 4 ABOUT HERE.

Contrasts are typically developed to sum to zero, as do all

five contrasts presented for the data in Table 4. The data

represent a hypothetical evaluation study conducted to determine

whet:ler various clinical groups score differently on a

psychological measure. Contrasts are uncorrelated or orthogonal

(as are the hypotheses they represent or test) when the contrasts

each sum to zero and when the sum of the cross-products of each

pair of contrasts all sum to zero also. Thus, the contrasts

presented in Table 4 are uncorrelated.

Some theorists do not believe that planned comparisons

should necessarily be orthogonal. For example, Winer (1971, p.

175) argues that "whether these comparisons are orthogonal or not

makes little or no difference." However, orthogonal planned

comparisons do have special appeal, for statistical reasons

delineated elsewhere (Kachigan, 1986, p. 309). But as Keppel

(1982, p. 147) suggests:



The value of orthogonal comparisons lies in the

independence of inferences, which, of course, is a

desirable quality to achieve. That is, orthogonal

comparisons are such that any decision concerning

the null hypothesis representing one comparison is

uninfluenced by the decision regarding any other

orthogonal comparison. The potential difficulty with

nonorthogonal comparisons, then, is interpreting the

different outcomes. If we reject the null hypotheses

for two nonorthogonal comparisons, which comparison

represents the "true" reason for the observed

differences?

There are two reasons why planned comparisons are usually

superior to unplanned comparisons. First, as noted by numerous

researchers (Glasnapp & Poggio, 1985, p. 474; Hays, 1981, p. 438;

Kirk, 1968, p. 95; Minium & Clarke, 1982, p. 322; Pedhazar, 1982,

pp. 304-305; Sowell & Casey, 1982, p. 119), planned comparisons

offer more power against Type II errors than do unplanned

comparisons, for reasons explained elsewhere (Games, 1971a,

1971b). For example, for the data presented in Table 4, the

omnibus test of differences among the six group means is not

statistically significant (F=1.5, df=5/6, p= .3155). Furthermore,

even if unplanned comparisons were conducted in violation of

conventional practice (since the omnibus test was not

statistically significant), statistically significant differences

would not have been identified either. However, a planned

comparison involving the mean of the two level-six subjects

versus the mean of ',:he remaining 10 subjects would have been

18



statistically significant (F=12.5, df=1/6, a= .0054).

However, significance is not the end-all and be-all of

evaluation research (Thompson, 1988c). The more important reason

why planned comparisons are important is that planned comparisons

tend to force the evaluator to be more thoughtful in conducting

researilu since planned comparisons must be carefully formulated

before data are collected and since typically only a limited

umber of planned comparisons can be stated in a given study. As

Snodgrass, Levy-Berger and Haydon (1985, p. 386) suggest, "The

experimenter who carries out post hoc comparisons often has a

rather diffuse hypothesis about what the effects of the

manipulation should be." As Keppel (1982, p. 165) notes,

Planned comparisons are usually the motivating

force behind an experiment. These comparisons are

targeted from the start of the investigation and

represent an interest in particular combinations

of conditions--not in the overall experiment.

Thus, as Kerlinger (1986, p. 219) suggests, "while post hoc tests

are important in actual research, especially for exploring one's

data and for getting leads for future research, the method of

planned comparisons is perhaps more important scientifically."

4. Evaluation reports should reflect a recognition that
covariance statistical corrections are usually least helpful
(and are most dangerous) when corrections are most needed.

Many "statistical controls" can be invoked to adjust

posttest scores when the evaluator believes that or random

assignment or design selection have failed to create groups that

were equivalent at the start of the experiment or quasi-
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experiment. These statistical controls are available throughout

the entire gamut of quantitative methods. For example, Gotsuch

(1983, pp. 89-90) notes that the first factor extracted in a

factor analysis can be located to pass directly through a

"covariate" variable in factor space. Since factors are

uncorrelated, the effects of the first factor on all other

factors will have been statistically controlled.

Though many of these statistical controls date back to the

beginning of the century (Nunnally, 1975, p. 9), most of the

controls have not enjoyed wide use. Analysis of covariance

(ANCOVA), for example, has been used in about four percent of the

recently published research (Goodwin & Goodwin, 1985, pp. 8-9;

Willson, 1980, p. 7). As explained by McGuigan (1983, p. 230):

Briefly this technique enables you to obtain a

measure of what you think is a particularly

relevant extraneous variable that you are not

controlling. This usually involves some

characteristics of your participants. For

instance, if you are conducting a study of the

effect of certain psychological variables on

weight, you might use as your measure the weight

of your participants before you administer your

experimental treatments. Through analysis of

covariance, you then can "statistically control"

this variable--that is, you can remove the effect

of initial weight from your dependent variable

scores, thus decreasing your error variance.
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One problem with statistical controls is that they assume

very reliable measurement of the control variables. For example,

Nunnally (1975, p. 10) notes that reliability' will not usually

have an appreciable influence on the substantive interpretation

of most statistical procedures as long as reliability of

measurement is at least 0.70, but that "Measurement reliability

becomes crucial... in employing statistical partialling

operations, as in the analysis of covariance or in the use of

partial correlational analysis." Cliff (1987, p. 129) concurs,

noting that

In general, partial correlation analysis is

affected by any lack of reliability or validity in

the variables. In many ways these effects resemble

tuberculosis as it occurred a generation or two

ago: They are widespread, the consequences are

serious, the symptoms are easily overlooked, and

most people are unaware of their etiology or

treatment.

Unfortunately, too many evaluators may not consider and

certainly dc not report the measurement error of their variables.

As Willson (1980, p. 9) comments, "That reliability of

instruments is unreported in almost half the published research

is likewise inexcusable at this late date."

Statistical control has been particularly appealing to some

evaluators when random assignment was not performed. These

researchers expect the statistical adjustments of ANCOVA to

magically make groups equivalent.

However, the primary difficulty with statistical control
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performed to make groups equivalent involves the homogeneity or

regression assumption of the methods. The methods assume that the

relationship between the covariate and the dependent variable is

equivalent in all experimental groups. This assumption is

necessary because the statistical control procedures are

implemented by adjusting the dependent variable to the extent

that the covariate and the dependent variable are correlated when

group membership information is completely ignored.

Campbell and Erlebacher (1975) present a concrete

illustration of how the use of statistical controls can seriously

distort evaluation findings when the homogeneity of regression

assumption is not met. ANCOVA has been very appealing in research

investigating the effects of compensatory education programs. In

these cases the treatment intervention is made available to all

or most children who are eligible. The control group usually

consists of children who were not eligible for the treatment and,

therefore, the group is inherently different in its character

than the treatment group. In these analyses both the dependent

variable and the covariate are cognitive variables. The

statistical control procedure assumes that the relationship

between the two variables is the same in both groups, i.e., since

correlation is a measure of the slope of the regression line for

the two variables, that children who are eligible for and receive

compensatory interventions learn at the same rate as children who

are not eligible for the intervention.

The decision to blithely use the statistical control when

the homogeneity of regression assumption is not met leads to
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"tragically misleading analyses" that actually "can mistakenly

make compensatory education look harmful" (Campbell a Erlebacher,

1975, p. 597). Similarly, Cliff (1987, p. 273)*argues that, "It

could be that the relationship between the dependent variable and

the covariate is different under different treatments. Such

occurrences tend to invalidate the interpretation of the Ample

partial correlations described above."

Persons who wish to use statistical controls of this type

are usually trapped in a nasty dilemma. If the controls are not

needed then they should not be used. But if statistical control

is needed because the groups in a study are not equivalent, then

often the homegeneity of regression assumption cannot be met i.nd

the use results in seriously distorted inferences.

It is interesting to note that many evaluators do not

recognize the parp.dox of testing both analytic assumptions and

substantive hypotheses for statistical significance. Evaluators

frequently try to obtain as large a sample as possible, so that

chances for "significance" of substantive tests are maximized.

This practice also leads to greater likelihood that tests of

homogeneity of variance or of regression will also be

significant.

The fallacious use of statistical control in inappropriate

ANCOVA applications needs to be recognized by more evaluators, as

some theoreticians have long warned of these various dangers

(Elashoff, 1959; Lord, 1960). ANCOVA is .a special case of

regression analysis. As Cliff (1987, p. 275) notes, "We could say

that we are fitting a single regression equation to the data for

all the groups and then doing an anova of the cAeviation from the
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regression line."

Consider the hypothetical data presented in Table 5.. The

hypothetical study involves four children from a cotapensatory

program ("A") who have lower mean achievement (-.19) on the

cognitive pretest ("ZX") than do their peers (mean=.19) from the

noncompensatory group. Furthermore, as one might expect, and as

illustrated in Figure 1 (which also presents the cognitive

posttest ("ZY") scores of the eight children), the children in

the two groups are learning at different rates.

INSERT TABLE 5 AND FIGURE 1 ABOUT HERE.

Nevertheless, the ANCOVA procedures employs the single beta

weight (r = beta weight for two variable case = .81) derived by

ignoring the group membership ("A" or "B") of the children, i.e.,

derived by ignoring the fact that the children are learning at

different rates. This beta weight adjustment is presented in

Figure 1 as the regression line for the variables, derived

ignoring group membership. However, Figure 1 also indicates that

the slopes of regression lines computed separately for the two

groups are different, and that it is not reasonable to use the

same adjustment for both groups.

Table 6 presents conventional ANOVA results for this data

set when no covariance adjustments are implemented. Table 7

presents an ANCOVA utilizing pretest scores ("ZX") as a

covariate. Table 8 presents an ANOVA performed on the residual

raw scores ("YE" = "ZY" "YHAT"); this analysis demonstrates

that ANCOVA is an ANOVA on posttest scores once the posttest
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scores have been residualized with the covariate ( "YE") in a

regression analysis completely ignoring group membership

information.

INSERT TABLES 6 THROUGH 8 ABOUT HERE.

What many evaluators do not understand is how ANCOVA can

make the experimental intervention appear less effective. Figure

2 represents a case in which the covariate ("X") is associated

with the dependent variable ("Y"), but not with the assignment to

experimental conditions ("A"). In other words, the homogeneity of

regression assumption is met.

Table 9 presents a one-way ANOVA corresponding to the Figure

2 Venn diagram. Table 10 presents the related ANCOVA. In this

example all the adjustment involving the covariate involves

variance in the dependent variable not associated with assignment

to experimental conditions. Therefore, the sum of squares for the

main effect remains unchanged, but the covariate does reduce the

sum of squares for error. This results in a smaller mean square

error, and thereby a larger calculated F for the main effect.

INSERT FIGURE 2 AND TABLES 9 AND 10 ABOUT HERE.

But Figure 3 presents a case where the homogeneity of

regression assumption is not met. Tables 11 and 12 present the

related ANOVA and ANCOVA results, respectively. Although the

intervention does has some effect, the application of the

covariate in this "worst case" example makes the intervention

appear entirely ineffective. Clearly, covariance adjustments can

have effects that some researchers do not recognize.
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INSERT FIGURE 3 AND TABLES 11 AND 12 ABOUT HERE.

The fact that ANCOVA is simply ANOVA on.the residual raw

scores may also be disturbing from an interpretation point of

view. The evaluator took a variable that presumably had some

meaning ("ZY"), made an adjustment on it, and was left with an

analysis of a residual raw score that, unlike the original

dependent variable, has little intrinsic meaning. The result

might be difficult to interpret even if the adjustment was

reasonable, i.e., if the homogeneity of regression assumption had

been met.

Too many researchers and evaluators blindly apply ANCOVA

absent an understanding or either the method's logic or its

pivotal assumptions. As McGuigan (1983, p. 231) has observed,

ANCOVA

can be seriously misused, and one cannot be assured

that it can "save" a shoddy experiment. Some

researchers overuse this method as in the instance of

a person I once overheard asking of a researcher,

"Where is your analysis of covariance?"--the

understanding in his department was that it is always

used in experimentation.

Of course, the preceeding discussion of the ANCOVA case

generalizes to the various types of statistical control that are

available to researchers.

ANCOVA is not robust to the violation of the homogeneity of

regression assumption, but some evaluators routinely decline to
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evaluate this assumption. It is ironic that this ineptness may

have contributed to the rise of alternative paradigms, for

conducting evaluation use research (Thompson, in press-a). The

failure to test the homogeneity of regression assumption can lead

to serious misinterpretations of program effects.

5. Evaluation reports should reflect the recognition that
stepwise analytic methods can lead to seriously distorted
interpretations.

Stepwise analytic methods may be among the most populax

research practices employed in both substantive and validity

research. As commonly employed, these methods allow the entry of

predictor variables one step at a time, and at each step the

removal of previously entered variables is also considered. The

methods seem to be somewhat casually employed especially in

regression and discriminant analysis research, though VE ants

are also available when other techniques are used (cf. Thompson,

1984, pp. 47-51).

With respect to regression applications, Marascuilo and

Serlin (1988, p. 671) note that, "The most popular method in use

for selecting the fewest number of predictor variables necessary

to guarantee adequate prediction is based on a model referred to

as stepwise regression." Huberty (in press) concurs, suggesting

that "The conduct of analytical procedures in 'steps' is quite

common... [These] procedures have enjoyed widespread use by

social and behavioral researchers." Unfortunately, stepwise

methods can lead to serious misinterpretations of results, and

"social science research is replete with misinterpretations of

this kind" (Pedhazur, 1982, p. 168).
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Three problems with stepwise methods merit special emphasis.

First, many evaluators, thanks to "canned" computer programs, do

not employ the correct degrees of freedom when evaluating changes

in explained variance, i e., usually changes in squared R or

lambda. For example, in a stepwise regression analysis, the

evaluator at step two may add a second predictor variable into a

prediction equation. The evaluator might test the significance of

the change in squared R by an F test using 1 and n-a-1 degrees of

freedom, where g is the number of predictor variables in the last

step. The numerator degrees of freedom reflects a premise that

only one additional predictor variable was employed to yield the

squared R change, but ignores the fact that the added predictor

was selected by consulting empirical sample results involving a

larger set of candidates for entry into the prediction process.

Thus, the process ignores that fact that, "in a sense, all the

variables are in the equation, even though some of them have

[effectively] been given zero weights" (Cliff, 1987, p. 187).

Consequently, Cliff (1987, p. 185) suggests that "most computer

programs for [stepwise] multiple regression are positively

satanic in their temptation toward Type I errors."

Second, some evaluators incorrectly interpret stepwise

results in which g predictor variables have been selected as

indicating that the predictor variables are the best variables to

use if the predictor variable set is limited to size g. In fact,

in a stepwise analysis in which three steps are conducted, and

predictors A, B, and C are employed, it is entirely possible that

three different predictors would represent the optimal predictor

set of size three. Stepwise nvthods select the next-best
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predictor at each step, given the presence of previous

predictors--this is not the same as selecting the optimal

predictor variable set of size g. As Huberty fin press) notes,

"It is generally understood by methodologists that the first g

variables entered into either a regression analysis or a

discriminant analysis do not necessarily constitute the 'best'

subset of size g."

Third, some evaluators incorrectly consult order of entry

information to evaluate the importance of various predictor

variables. As Huberty (in press) explains,

The first variable entered with a stepwise

regression analysis is determined by the

correlation between each predictor variable and

the criterion variable... The third, say, variable

to be entered (and often considered to be the

third most important) is dependent on the two

variables already entered. If one or two the

variables already entered would be changed, then

the third variable entered may also be different.

This dependence or conditionality truly makes

variable importance as determined by stepwise

analyses very questionable.

The small data set for a population (N=12) presented in

Table 13 can be employed to illustrate how sampling error can

seriously distort the interpretation of stepwise results involved

in predicting dependent variable ZY. Table 14 indicates that the

three predictor variables share little variance with each other



and that the order of predictor variable explanatory power is,

respectively, ZX1, ZX2, ZX3, and ZX4.

INSERT TABLES 13 AND 14 ABOUT HERE.

Presume that the evaluator draws a random sample of nine

subjects from the population of 12 persons. Each of 55 random

collections of nine subjects (omit subjects 1,2,3; omit 1,2,4;

etc.) is equally probable. For these illustrative data, only

eight samples (omit 1,2,5; 1,217; 2,317; 2,3,10; 3,4,5; 5,6,8;

7,8,9; and 7,8,12) enter the four predictor variables in the

order that is known to be correct when the true population

parameters are consulted.

Indeed, only 23 samples select predictor ZX1 as the first

prediction entry. Sixteen samples select ZX2 as the first entry;

10 samples select ZX3 as the first variable entered; six samples

select the worst predictor, ZX4, as the first or best predictor

of ZY. For the sample omitting subjects 3, 4 and 9, the predictor

variables are entered in the order: ZX41 ZX2, ZX3, and ZXl.

Clearly, sampling error can seriously distort stepwise

results. As Kachigan (1986, p. 265) argues,

there is the danger that we might select variables

for inclusion in the regression equation based on

chance relationships. Therefore, as stressed in

our discussion of multiple correlation, we should

apply our chosen regression equation to a fresh

sample of objects to see how well it does in fact

predict values on the criterion variable. This

validation procedure is absolutely essential if we



are to have any faith at all in the future

applIcatilns of the regression equation.

Alternatively, the evaluator might employ a. cross-validation

procedure such as the one recommended by Huck, Cormier and Bounds

(1974, p. 159).

Given these considerations, Kerlinger (1986, p. 545) argues

that "the research problem and the theory behind the problem (and

not stepwise methods] should determine the order of entry of

variables in multiple regression analysis." Evaluators who choose

to emloy stepwise methods, particularly if they also fail to use

replication or cross - validation methods, might best consider

Cliff's (1987, pp. 120-121) argument that "a large proportion of

the published results using this method probably present

conclusions that are not supported by the data."

Summary

As noted previously, methodological integrity is not the

sina qua non of program evaluation endeavors. But decision-makers

do have a right to expect, at a minimum, that evaluation results

will generalize to reality. Five precepts regarding improved

methodological practice were presented and explained in some

detail. These precepts focus on statistical significance testing,

the use of multivariate statistics to honor the complexity of

program reality, the discarding of variance to conduct OVA or

chi-square analyses, the use of covariance or statistical

control, and the use of stepwise analytic methods.
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Table 1
Statistical Significance at Various Sample Sizes
for.a Fixed Effect Size (Moderate Effect Size)

Source SOS r sq df MS F calc F crit Decision
SOSexp 98.7 0.098473 2 49.35 0.054614-'200.00 Not Rej
SOSunexp 903.6 1 903.6
SOStot 1002.3 3 334.1

SOSexp 98.7 0.098473 2 49.35 0.546148 4.10 Not Rej
SOSunexp 903.6 10 90.36
SOStot 1002.3 12 83.525

SOSexp 98.7 0.098473 2 49.35 1.092297 3.49 Not Rej
SOSunexp 903.6 20 45.18
SOStot 1002.3 22 45.55909

SOSexp 98.7 0.098473 2 49.35 1.638446 3.32 Not Rej
SOSunexp 903.6 30 30.12
SOStot 1002.3 32 31.32187

SOSexp 98.7 0.098473 2 49.35 2.184594 3.23 Not Rej
SOSunexp 903.6 40 22.59
SOStot 1002.3 42 23.86428

SOSexp 98.7 0.098473 2 49.35 2.730743 c3.19 Not Rej
SOSunexp 903.6 50 18.072
SOStot 1002.3 52 19.275

SOSexp 98.7 0.098473 2 49.35 3.276892 3.15 Rej
SOSunexp 903.6 60 15.06
SOStot 1002.3 62 16.16612

SOSexp 98.7 0.098473 2 49.35 6.553784 3.07 Rej
SOSunexp 903.6 120 7.53
SOStot 1002.3 122 8.215573
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Table 2
Statistical Significance at Various Sample Sizes

for a Fixed Effect Size (Larger Effect Size)

Source SOS r sq df MS F calc F crit Decision
SOSexp 337.2 0.336426 2 168.6 0.253495.'200.00 Not Rej
SOSunexp 665.1 1 665.1
SOStot 1002.3 3 334.1

SOSexp 337.2 0.336426 2 168.6 2.534957 4.10 Not Rej
SOSunexp 665.1 10 66.51
SOStot 1002.3 12 83.525

SOSexp 337.2 0.336426 2 168.6 5.069914 3.49 Rej
SOSunexp 665.1 20 33.255
SOStot 1002.3 22 45.55909

SOSexp 337.2 0.336426 2 168.6 7.604871 3.32 Rej
SOSunexp 665.1 30 22.17
SOStot 1002.3 32 31.32187

SOSexp 337.2 0.336426 2 168.6 10.13982 3.23 Rej
SOSunexp 665.1 40 16.6275
SOStot 1002.3 42 23.86428

SOSexp 337.2 0.336426 2 168.6 12.67478 c3.19 Rej
SOSunexp 665.1 50 13.302
SOStot 1002.3 52 19.275

SOSexp 337.2 0.336426 2 168.6 15.20974 3.15 Rej
SOSunexp 665.1 60 11.085
SOStot 1002.3 62 16.16612

SOSexp 337.2 0.336426 2 168.6 30.41948 3.07 Rej
SOSunexp 665.1 120 5.5425
SOStot 1002.3 122 8.215573

Table 3
"Testwise" and "Experimentwise" Error Rates for Selected Studies

"Testwise"
Rate Minimum

"Experimentwise" Rate
n of Tests Maximum

05.0% 05.0% 1 - ( - 05.0%) ** 1 =
05.0% 05.0% 1 - ( 95.0%) ** 1 =
05.0% 05.0% 1 - 95.0% = 05.00%

05.0% 05.0% 1 ( - 05.0%) ** 5 = 22.62%
05.0% 05.0% 1 ( - 05.0%) ** 10 = 40.13%
05.0% 05.0% 1 - ( - 05.0%) ** 20 = 64.15%

Note. An alpha of 0.05 equals an alpha of 05.0%. "**" means
"raised to the power of". The first several rows of the table
illustrate the that "testwise" and "experimentwise" error rates
are the same when only one test is conducted.



Table 4
Hypothetical Validity Study Data

Group ID DV Cl C2 C3 C4 C5
1 1 10 -1 -1 -1 -1 -1

2 20 -1 -1 -1 -1 -1.'
2 3 10 1 -1 -1 -1 -1

4 20 1 -1 -1 -1 -1
3 5 10 0 2 -1 -1 -1

6 20 0 2 -1 -1 -1
4 7 10 0 0 3 -1 -1

8 20 0 0 3 -1 -1
5 9 10 0 0 0 4 -1

10 20 0 0 0 4 -1
6 11 25 0 0 0 0 5

12 35 0 0 0 0 5

Table 5
Hypothetical ANCOVA Data Set

Group ZY ZX ZYZX YHAT YE

A -.88 -1.68 1.48 -1.36 .48
A -.44 -.68 .30 -.56 .11
A .00 .31 .00 .25 -.25
A .44 1.30 .57 1.06 -.62
B -1.32 -.68 .90 -.56 -.77
B -.44 -.19 .08 -.15 -.29
B .88 .56 .49 .45 .43
B 1.76 1.06 1.86 .86 .91

Note. The beta weight for the covariance procedure (.813) equals
the sum of the cross products (ZXZY) of ZX and ZY divided by n-1
(5.694/n-1). The predicted posttest score (YHAT) is each child's
pretest (ZX) multiplied by the beta weight. The error in each
prediction (YE) is equal to ZY minus YHAT.

Table 6
Conventional ANOVA Results

Sum of Mean Effect
Source Squares df Squares F Size

Treatment .39 1 .19 .35 .056
"Error" 6.61 5 1.10
Total 7.00 7 1.00

Note. Effect size is a r squared analog.
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Source

Covariate
Treatment
"Error"
Total

Table 7
ANCOVA Results

Sum of Mean Effect
Squares df Squares F Size

4.63
.04

2.33
7.00

1 4.63
1 .04
5 .47
7 1.00

9.95 :661
.08 .006

Note. Effect size is a r squared analog.

Table 8
ANOVA Results Using YE as Dependent Variable

Source

Treatment
"Error"
Total

Sum of Mean Effect
Squares df Squares F Size

.04 1 .04 .08 .006
2.33 5 .47
2.37 6

Table 9
ANOVA Associated with Tigure 2

Source

Treatment
"Error"
Total

Sum of Mean
Squares df Squares Calc Crit

35 1 35.00 4.85 5.12
65 9 7.22

100 10

Table 10
ANCOVA Associated with Figure 2

Source

Covariate
Treatment
"Error"
Total

Sum of Mean
Squares df Squares Calc Crit

20 1 20.0
35 1 35.00 6.22 5.32
45 8 5.62

100 10

Table 11
ANOVA Associated with Figure 3

Sum of Mean
Source Squares df Squares Calc Crit

Treatment
"Error"
Total

20 1 20.00 2.25 5.12
80 9 8.89

100 10



Table 12
ANCOVA Associated with Figure 3

Sum of Mean
Source Squares df Squares Calc: Crit

Covariat 30 1 30.0
Treatment 0 1 .00 .00 5.32
"Error" 70 8 8.75
Total 100 10

Table 13
Standardized Data for Five Variables

ID ZY ZX1 ZX2 ZX3 ZX4

1 .790 1.422 .350 .322 -.313
2 -1.589 .112 -1.239 -1.094 -.365
3 .127 -.965 .271 .201 -.060
4 -1.656 -2.167 -.498 -.970 .218
5 .176 -1.291 .153 2.393 .159
6 -.017 .636 -1.607 -.168 -1.746
7 -.397 -.173 .931 -.112 -1.704
8 -.594 .532 -.108 .092 .127
9 .846 .528 1.237 -.092 .035

10 .810 .642 -1.400 1.135 1.654
11 1.764 .373 1.290 -.543 1.005
12 -.260 .352 .620 -1.163 .989

Table 14
Bivariate Correlation Matrix
ZY ZX1 ZX2 ZX3 ZX4

ZY .497 .444 .384 .319
ZX1 24.7% .018 -.074 -.004
ZX2 19.7% .0% -.054 .099
ZX3 14.7% .5% .3% .103
ZX4 10.2% .0% 1.0% 1.1%

Note. Bivariate r coefficients are presented above the diagonal.
Common variance (squared r) percentages are presented
below the diagonal.



Figure 1
Scattergram of ANCOVA Data
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Figure 2

ANCOVA Best Case

Figure 3

ANCOVA Worst Case
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